Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Show all

1.

Valem, L. P.; Pedronette, D. C. G.; Allili, M. S.

Contrastive Loss Based on Contextual Similarity for Image Classification Proceedings Article

In: G., Bebis; V., Patel; J., Gu; J., Panetta; Y., Gingold; K., Johnsen; M.S., Arefin; S., Dutta; A., Biswas (Ed.): Lect. Notes Comput. Sci., pp. 58–69, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-303177391-4 (ISBN), (Journal Abbreviation: Lect. Notes Comput. Sci.).

Abstract | Links | BibTeX | Tags: Adversarial machine learning, Classification accuracy, Contrastive Learning, Cross entropy, Experimental evaluation, Federated learning, Image classification, Image comparison, Image embedding, Images classification, Model generalization, Model robustness, Neighborhood information, Self-supervised learning, Similarity measure

2.

Renaud, P.; Trottier, D.; Rouleau, J. -L.; Goyette, M.; Saumur, C.; Boukhalfi, T.; Bouchard, S.

Using immersive virtual reality and anatomically correct computer-generated characters in the forensic assessment of deviant sexual preferences Journal Article

In: Virtual Reality, vol. 18, no. 1, pp. 37–47, 2014, ISSN: 13594338, (Publisher: Springer London).

Abstract | Links | BibTeX | Tags: Area Under the Curve (AUC), Classification accuracy, Computer forensics, Computer generated characters, Deregulation, Gears, Immersive virtual reality, Pedophilia, Plethysmography, Receiver operating characteristic analysis, Self regulation, Virtual addresses, Virtual character, virtual reality

Share this page