Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Show all

1.

Ziou, D.; Bouguila, N.; Allili, M. S.; El-Zaart, A.

Finite Gamma mixture modelling using minimum message length inference: Application to SAR image analysis Journal Article

In: International Journal of Remote Sensing, vol. 30, no. 3, pp. 771–792, 2009, ISSN: 01431161, (Publisher: Taylor and Francis Ltd.).

Abstract | Links | BibTeX | Tags: Change detection, Determining the number of clusters, estimation method, finite element method, Finite mixtures, Gamma distribution, Gamma mixtures, Image analysis, Image processing, Image segmentation, Minimum message lengths, Mixtures, Number of clusters, numerical model, Probability distributions, Radar imaging, SAR image segmentation, Synthetic aperture radar, Unsupervised learning

Share this page