Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Afficher tous

1.

Valem, L. P.; Pedronette, D. C. G.; Allili, M. S.

Contrastive Loss Based on Contextual Similarity for Image Classification Article d'actes

Dans: G., Bebis; V., Patel; J., Gu; J., Panetta; Y., Gingold; K., Johnsen; M.S., Arefin; S., Dutta; A., Biswas (Ed.): Lect. Notes Comput. Sci., p. 58–69, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-303177391-4 (ISBN), (Journal Abbreviation: Lect. Notes Comput. Sci.).

Résumé | Liens | BibTeX | Étiquettes: Adversarial machine learning, Classification accuracy, Contrastive Learning, Cross entropy, Experimental evaluation, Federated learning, Image classification, Image comparison, Image embedding, Images classification, Model generalization, Model robustness, Neighborhood information, Self-supervised learning, Similarity measure

2.

Renaud, P.; Trottier, D.; Rouleau, J. -L.; Goyette, M.; Saumur, C.; Boukhalfi, T.; Bouchard, S.

Using immersive virtual reality and anatomically correct computer-generated characters in the forensic assessment of deviant sexual preferences Article de journal

Dans: Virtual Reality, vol. 18, no 1, p. 37–47, 2014, ISSN: 13594338, (Publisher: Springer London).

Résumé | Liens | BibTeX | Étiquettes: Area Under the Curve (AUC), Classification accuracy, Computer forensics, Computer generated characters, Deregulation, Gears, Immersive virtual reality, Pedophilia, Plethysmography, Receiver operating characteristic analysis, Self regulation, Virtual addresses, Virtual character, virtual reality

Partager cette page