Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Show all

1.

Boulmerka, A.; Allili, M. S.

Thresholding-based segmentation revisited using mixtures of generalized Gaussian distributions Proceedings Article

In: Proceedings - International Conference on Pattern Recognition, pp. 2894–2897, Tsukuba, 2012, ISBN: 978-4-9906441-0-9, (ISSN: 10514651).

Abstract | Links | BibTeX | Tags: Arbitrary number, Gaussian noise (electronic), Generalized Gaussian Distributions, Heavy-tailed, Image segmentation, Kittler, Minimum error thresholding, Multi-modal, New approaches, Non-Gaussian, Otsu's method, Pattern Recognition, State-of-the-art techniques, Synthetic data

2.

Allili, M. S.; Ziou, D.; Bouguila, N.; Boutemedjet, S.

Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection Journal Article

In: IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 10, pp. 1373–1377, 2010, ISSN: 10518215.

Abstract | Links | BibTeX | Tags: Clustering model, Feature extraction, Feature selection, Gaussian distribution, Generalized Gaussian, Heavy-tailed, High dimensional spaces, Image and video segmentation, Image segmentation, image/video segmentation, Minimum message lengths, Real-world image, Video cameras

3.

Allili, M. S.; Ziou, D.; Bouguila, N.; Boutemedjet, S.

Unsupervised feature selection and learning for image segmentation Proceedings Article

In: CRV 2010 - 7th Canadian Conference on Computer and Robot Vision, pp. 285–292, Ottawa, ON, 2010, ISBN: 978-0-7695-4040-5.

Abstract | Links | BibTeX | Tags: Clustering algorithms, Computer vision, Evolutionary algorithms, Feature extraction, Feature selection, Gaussian distribution, Generalized Gaussian, Generalized Gaussian Distributions, Heavy-tailed, High dimensional spaces, Image distributions, Image segmentation, Large database, Over-estimation, Real-world image, Unsupervised feature selection

Share this page