

de Recherche et d’Innovation
en Cybersécurité et Société
Allili, M. S.; Baaziz, N.; Mejri, M.
Texture modeling using contourlets and finite mixtures of generalized gaussian distributions and applications Journal Article
In: IEEE Transactions on Multimedia, vol. 16, no. 3, pp. 772–784, 2014, ISSN: 15209210, (Publisher: Institute of Electrical and Electronics Engineers Inc.).
Abstract | Links | BibTeX | Tags: Contourlet coefficients, Contourlet transform, Defects, Directional information, Fabric texture, face recognition, Generalized Gaussian Distributions, Inspection, Mixtures, Probability density function, Probability density functions (PDFs), State-of-the-art methods, Texture retrieval, Textures
@article{allili_texture_2014,
title = {Texture modeling using contourlets and finite mixtures of generalized gaussian distributions and applications},
author = {M. S. Allili and N. Baaziz and M. Mejri},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896903467&doi=10.1109%2fTMM.2014.2298832&partnerID=40&md5=16b2fa741e71e1e581f6b0f54c43a676},
doi = {10.1109/TMM.2014.2298832},
issn = {15209210},
year = {2014},
date = {2014-01-01},
journal = {IEEE Transactions on Multimedia},
volume = {16},
number = {3},
pages = {772–784},
abstract = {In this paper, we develop a new framework for contourlet-based statistical modeling using finite Mixtures of Generalized Gaussian distributions (MoGG). On the one hand, given the rich directional information provided by the contourlet transform (CT), we propose to use a redundant version of the CT, which describes texture structures more accurately. On the other hand, we use MoGG modeling of contourlet coefficients distribution, which allows for precise capturing of a wide range of histogram shapes and provides better description and discrimination of texture than single probability density functions (pdfs). Moreover, we propose three applications for the proposed approach, namely: (1) texture retrieval, (2) fabric texture defect detection, and 3) infrared (IR) face recognition. We compare two implementations of the CT: standard CT (SCT) and redundant CT (RCT). We show that the proposed approach yields better results in the applications studied compared to recent state-of-the-art methods. © 2014 IEEE.},
note = {Publisher: Institute of Electrical and Electronics Engineers Inc.},
keywords = {Contourlet coefficients, Contourlet transform, Defects, Directional information, Fabric texture, face recognition, Generalized Gaussian Distributions, Inspection, Mixtures, Probability density function, Probability density functions (PDFs), State-of-the-art methods, Texture retrieval, Textures},
pubstate = {published},
tppubtype = {article}
}
Boulmerka, A.; Allili, M. Saïd; Ait-Aoudia, S.
A generalized multiclass histogram thresholding approach based on mixture modelling Journal Article
In: Pattern Recognition, vol. 47, no. 3, pp. 1330–1348, 2014, ISSN: 00313203.
Abstract | Links | BibTeX | Tags: Arbitrary number, Conditional distribution, Gaussian distribution, Gaussian noise (electronic), Generalized Gaussian Distributions, Graphic methods, Histogram thresholding, Image segmentation, Minimum error thresholding, Mixture-modelling, Mixtures, State-of-the-art techniques, Statistical methods, Thresholding, Thresholding methods
@article{boulmerka_generalized_2014,
title = {A generalized multiclass histogram thresholding approach based on mixture modelling},
author = {A. Boulmerka and M. Saïd Allili and S. Ait-Aoudia},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888328869&doi=10.1016%2fj.patcog.2013.09.004&partnerID=40&md5=d8b872bd0abe9e6c4d52439f8ec360bc},
doi = {10.1016/j.patcog.2013.09.004},
issn = {00313203},
year = {2014},
date = {2014-01-01},
journal = {Pattern Recognition},
volume = {47},
number = {3},
pages = {1330–1348},
abstract = {This paper presents a new approach to multi-class thresholding-based segmentation. It considerably improves existing thresholding methods by efficiently modeling non-Gaussian and multi-modal class-conditional distributions using mixtures of generalized Gaussian distributions (MoGG). The proposed approach seamlessly: (1) extends the standard Otsu's method to arbitrary numbers of thresholds and (2) extends the Kittler and Illingworth minimum error thresholding to non-Gaussian and multi-modal class-conditional data. MoGGs enable efficient representation of heavy-tailed data and multi-modal histograms with flat or sharply shaped peaks. Experiments on synthetic data and real-world image segmentation show the performance of the proposed approach with comparison to recent state-of-the-art techniques. © 2013 Elsevier Ltd. All rights reserved.},
keywords = {Arbitrary number, Conditional distribution, Gaussian distribution, Gaussian noise (electronic), Generalized Gaussian Distributions, Graphic methods, Histogram thresholding, Image segmentation, Minimum error thresholding, Mixture-modelling, Mixtures, State-of-the-art techniques, Statistical methods, Thresholding, Thresholding methods},
pubstate = {published},
tppubtype = {article}
}
Allili, M. S.
Wavelet modeling using finite mixtures of generalized Gaussian distributions: Application to texture discrimination and retrieval Journal Article
In: IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 1452–1464, 2012, ISSN: 10577149.
Abstract | Links | BibTeX | Tags: algorithm, Algorithms, article, Automated, automated pattern recognition, computer assisted diagnosis, Computer Simulation, Computer-Assisted, Data Interpretation, Finite mixtures, Generalized Gaussian, Generalized Gaussian Distributions, Image Enhancement, Image Interpretation, Image segmentation, Imaging, Kullback Leibler divergence, Marginal distribution, methodology, Mixtures, Models, Monte Carlo methods, Monte Carlo sampling, Normal Distribution, Pattern Recognition, Performance improvements, reproducibility, Reproducibility of Results, Sensitivity and Specificity, Similarity measure, State-of-the-art approach, Statistical, statistical analysis, statistical model, Texture data set, Texture discrimination, Texture modeling, Textures, three dimensional imaging, Three-Dimensional, Wavelet Analysis, Wavelet coefficients, Wavelet decomposition, Wavelet modeling
@article{allili_wavelet_2012,
title = {Wavelet modeling using finite mixtures of generalized Gaussian distributions: Application to texture discrimination and retrieval},
author = {M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859096106&doi=10.1109%2fTIP.2011.2170701&partnerID=40&md5=0420facdc04978ad84bea3126bc1183a},
doi = {10.1109/TIP.2011.2170701},
issn = {10577149},
year = {2012},
date = {2012-01-01},
journal = {IEEE Transactions on Image Processing},
volume = {21},
number = {4},
pages = {1452–1464},
abstract = {This paper addresses statistical-based texture modeling using wavelets. We propose a new approach to represent the marginal distribution of the wavelet coefficients using finite mixtures of generalized Gaussian (MoGG) distributions. The MoGG captures a wide range of histogram shapes, which provides better description and discrimination of texture than using single probability density functions (pdf's), as proposed by recent state-of-the-art approaches. Moreover, we propose a model similarity measure based on Kullback-Leibler divergence (KLD) approximation using Monte Carlo sampling methods. Through experiments on two popular texture data sets, we show that our approach yields significant performance improvements for texture discrimination and retrieval, as compared with recent methods of statistical-based wavelet modeling. © 2011 IEEE.},
keywords = {algorithm, Algorithms, article, Automated, automated pattern recognition, computer assisted diagnosis, Computer Simulation, Computer-Assisted, Data Interpretation, Finite mixtures, Generalized Gaussian, Generalized Gaussian Distributions, Image Enhancement, Image Interpretation, Image segmentation, Imaging, Kullback Leibler divergence, Marginal distribution, methodology, Mixtures, Models, Monte Carlo methods, Monte Carlo sampling, Normal Distribution, Pattern Recognition, Performance improvements, reproducibility, Reproducibility of Results, Sensitivity and Specificity, Similarity measure, State-of-the-art approach, Statistical, statistical analysis, statistical model, Texture data set, Texture discrimination, Texture modeling, Textures, three dimensional imaging, Three-Dimensional, Wavelet Analysis, Wavelet coefficients, Wavelet decomposition, Wavelet modeling},
pubstate = {published},
tppubtype = {article}
}
Boulmerka, A.; Allili, M. S.
Thresholding-based segmentation revisited using mixtures of generalized Gaussian distributions Proceedings Article
In: Proceedings - International Conference on Pattern Recognition, pp. 2894–2897, Tsukuba, 2012, ISBN: 978-4-9906441-0-9, (ISSN: 10514651).
Abstract | Links | BibTeX | Tags: Arbitrary number, Gaussian noise (electronic), Generalized Gaussian Distributions, Heavy-tailed, Image segmentation, Kittler, Minimum error thresholding, Multi-modal, New approaches, Non-Gaussian, Otsu's method, Pattern Recognition, State-of-the-art techniques, Synthetic data
@inproceedings{boulmerka_thresholding-based_2012,
title = {Thresholding-based segmentation revisited using mixtures of generalized Gaussian distributions},
author = {A. Boulmerka and M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874575463&partnerID=40&md5=0665cce9aa19af524d1213c1ff728d94},
isbn = {978-4-9906441-0-9},
year = {2012},
date = {2012-01-01},
booktitle = {Proceedings - International Conference on Pattern Recognition},
pages = {2894–2897},
address = {Tsukuba},
abstract = {This paper presents a new approach to image-thresholding-based segmentation. It considerably improves existing methods by efficiently modeling non-Gaussian and multi-modal class-conditional distributions. The proposed approach seamlessly: 1) extends the Otsu's method to arbitrary numbers of thresholds and 2) extends the Kittler and Illingworth minimum error thresholding to non-Gaussian and multi-modal class-conditional data. We use the recently-proposed mixture of generalized Gaussian distributions (MoGG) modeling, which enables to efficiently represent heavy-tailed data, as well as multi-modal histograms with flat and sharply-shaped peaks. Experiments performed on synthetic data and real-world image segmentation show the performance of the proposed approach with comparison to recent state-of-the-art techniques. © 2012 ICPR Org Committee.},
note = {ISSN: 10514651},
keywords = {Arbitrary number, Gaussian noise (electronic), Generalized Gaussian Distributions, Heavy-tailed, Image segmentation, Kittler, Minimum error thresholding, Multi-modal, New approaches, Non-Gaussian, Otsu's method, Pattern Recognition, State-of-the-art techniques, Synthetic data},
pubstate = {published},
tppubtype = {inproceedings}
}
Allili, M. S.; Baaziz, N.
Contourlet-based texture retrieval using a mixture of generalized Gaussian distributions Journal Article
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6855 LNCS, no. PART 2, pp. 446–454, 2011, ISSN: 03029743, (ISBN: 9783642236778 Place: Seville).
Abstract | Links | BibTeX | Tags: Contourlet transform, Contourlets, Distribution modelling, Finite mixtures, Gaussian distribution, Generalized Gaussian Distributions, Image analysis, Kullback-Leibler divergence, Mixtures, Monte-Carlo sampling, Probability density function, Similarity measure, Statistical representations, Texture discrimination, Texture retrieval, Textures
@article{allili_contourlet-based_2011,
title = {Contourlet-based texture retrieval using a mixture of generalized Gaussian distributions},
author = {M. S. Allili and N. Baaziz},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052796353&doi=10.1007%2f978-3-642-23678-5_53&partnerID=40&md5=fde8aaeea1609c81747b0ab27a8c78ce},
doi = {10.1007/978-3-642-23678-5_53},
issn = {03029743},
year = {2011},
date = {2011-01-01},
journal = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
volume = {6855 LNCS},
number = {PART 2},
pages = {446–454},
abstract = {We address the texture retrieval problem using contourlet-based statistical representation. We propose a new contourlet distribution modelling using finite mixtures of generalized Gaussian distributions (MoGG). The MoGG allows to capture a wide range of contourlet histogram shapes, which provides better description and discrimination of texture than using single probability density functions (pdfs). We propose a model similarity measure based on Kullback-Leibler divergence (KLD) approximation using Monte-Carlo sampling methods. We show that our approach using a redundant contourlet transform yields better texture discrimination and retrieval results than using other methods of statistical-based wavelet/contourlet modelling. © 2011 Springer-Verlag.},
note = {ISBN: 9783642236778
Place: Seville},
keywords = {Contourlet transform, Contourlets, Distribution modelling, Finite mixtures, Gaussian distribution, Generalized Gaussian Distributions, Image analysis, Kullback-Leibler divergence, Mixtures, Monte-Carlo sampling, Probability density function, Similarity measure, Statistical representations, Texture discrimination, Texture retrieval, Textures},
pubstate = {published},
tppubtype = {article}
}
Allili, M. S.; Ziou, D.; Bouguila, N.; Boutemedjet, S.
Unsupervised feature selection and learning for image segmentation Proceedings Article
In: CRV 2010 - 7th Canadian Conference on Computer and Robot Vision, pp. 285–292, Ottawa, ON, 2010, ISBN: 978-0-7695-4040-5.
Abstract | Links | BibTeX | Tags: Clustering algorithms, Computer vision, Evolutionary algorithms, Feature extraction, Feature selection, Gaussian distribution, Generalized Gaussian, Generalized Gaussian Distributions, Heavy-tailed, High dimensional spaces, Image distributions, Image segmentation, Large database, Over-estimation, Real-world image, Unsupervised feature selection
@inproceedings{allili_unsupervised_2010,
title = {Unsupervised feature selection and learning for image segmentation},
author = {M. S. Allili and D. Ziou and N. Bouguila and S. Boutemedjet},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954407977&doi=10.1109%2fCRV.2010.44&partnerID=40&md5=a7d8e3147216429f18ef7af3167acb42},
doi = {10.1109/CRV.2010.44},
isbn = {978-0-7695-4040-5},
year = {2010},
date = {2010-01-01},
booktitle = {CRV 2010 - 7th Canadian Conference on Computer and Robot Vision},
pages = {285–292},
address = {Ottawa, ON},
abstract = {In this paper we investigate the integration of feature selection in segmentation through an unsupervised learning approach. We propose a clustering algorithm that efficiently mitigates image under/over-segmentation, by combining generalized Gaussian mixture modeling and feature selection. The algorithm is based on generalized Gaussian mixture modeling which is less prone to region number over-estimation in case of noisy and heavy-tailed image distributions. On the other hand, our feature selection mechanism allows to automatically discard uninformative features, which leads to better discrimination and localization of regions in high-dimensional spaces. Experimental results on a large database of real-world images showed us the effectiveness of the proposed approach. © 2010 IEEE.},
keywords = {Clustering algorithms, Computer vision, Evolutionary algorithms, Feature extraction, Feature selection, Gaussian distribution, Generalized Gaussian, Generalized Gaussian Distributions, Heavy-tailed, High dimensional spaces, Image distributions, Image segmentation, Large database, Over-estimation, Real-world image, Unsupervised feature selection},
pubstate = {published},
tppubtype = {inproceedings}
}
Allili, M. S.
Wavelet-based texture retrieval using a mixture of generalized Gaussian distributions Proceedings Article
In: Proceedings - International Conference on Pattern Recognition, pp. 3143–3146, Istanbul, 2010, ISBN: 978-0-7695-4109-9, (ISSN: 10514651).
Abstract | Links | BibTeX | Tags: Avelet decomposition, Gaussian distribution, Generalized Gaussian Distributions, Image retrieval, KLD, Kullback-Leibler distance, Marginal distribution, Metropolis-Hastings samplings, Mixtures, Pattern Recognition, Probability density function, Probability density function (pdf), Similarity measurements, Statistical methods, Statistical scheme, Texture discrimination, Texture energy, Texture image retrieval, Texture retrieval, Textures, Wavelet coefficients, Wavelet representation
@inproceedings{allili_wavelet-based_2010,
title = {Wavelet-based texture retrieval using a mixture of generalized Gaussian distributions},
author = {M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-78149489822&doi=10.1109%2fICPR.2010.769&partnerID=40&md5=bf29f6057b57f85a0d83ac16bb4afaf5},
doi = {10.1109/ICPR.2010.769},
isbn = {978-0-7695-4109-9},
year = {2010},
date = {2010-01-01},
booktitle = {Proceedings - International Conference on Pattern Recognition},
pages = {3143–3146},
address = {Istanbul},
abstract = {In this paper, we address the texture retrieval problem using wavelet distribution. We propose a new statistical scheme to represent the marginal distribution of the wavelet coefficients using a mixture of generalized Gaussian distributions (MoGG). The MoGG allows to capture a wide range of histogram shapes, which provides a better description of texture and enhances texture discrimination. We propose a similarity measurement based on Kullback-Leibler distance (KLD), which is calculated using MCMC Metropolis-Hastings sampling algorithm. We show that our approach yields better texture retrieval results than previous methods using only a single probability density function (pdf) for wavelet representation, or texture energy distribution. © 2010 IEEE.},
note = {ISSN: 10514651},
keywords = {Avelet decomposition, Gaussian distribution, Generalized Gaussian Distributions, Image retrieval, KLD, Kullback-Leibler distance, Marginal distribution, Metropolis-Hastings samplings, Mixtures, Pattern Recognition, Probability density function, Probability density function (pdf), Similarity measurements, Statistical methods, Statistical scheme, Texture discrimination, Texture energy, Texture image retrieval, Texture retrieval, Textures, Wavelet coefficients, Wavelet representation},
pubstate = {published},
tppubtype = {inproceedings}
}