
Slide

Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société
de Recherche et d’Innovation
en Cybersécurité et Société
1.
Yapi, D.; Nouboukpo, A.; Allili, M. S.; Member, IEEE
Mixture of multivariate generalized Gaussians for multi-band texture modeling and representation Article de journal
Dans: Signal Processing, vol. 209, 2023, ISSN: 01651684, (Publisher: Elsevier B.V.).
Résumé | Liens | BibTeX | Étiquettes: Color texture retrieval, Content-based, Content-based color-texture retrieval, Convolution, convolutional neural network, Gaussians, Image retrieval, Image texture, Mixture of multivariate generalized gaussians, Multi-scale Decomposition, Subbands, Texture representation, Textures
@article{yapi_mixture_2023,
title = {Mixture of multivariate generalized Gaussians for multi-band texture modeling and representation},
author = {D. Yapi and A. Nouboukpo and M. S. Allili and IEEE Member},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151300047&doi=10.1016%2fj.sigpro.2023.109011&partnerID=40&md5=3bf98e9667eb7b60cb3f59ed1dcb029c},
doi = {10.1016/j.sigpro.2023.109011},
issn = {01651684},
year = {2023},
date = {2023-01-01},
journal = {Signal Processing},
volume = {209},
abstract = {We present a unified statistical model for multivariate and multi-modal texture representation. This model is based on the formalism of finite mixtures of multivariate generalized Gaussians (MoMGG) which enables to build a compact and accurate representation of texture images using multi-resolution texture transforms. The MoMGG model enables to describe the joint statistics of subbands in different scales and orientations, as well as between adjacent locations within the same subband, providing a precise description of the texture layout. It can also combine different multi-scale transforms to build a richer and more representative texture signature for image similarity measurement. We tested our model on both traditional texture transforms (e.g., wavelets, contourlets, maximum response filter) and convolution neural networks (CNNs) features (e.g., ResNet, SqueezeNet). Experiments on color-texture image retrieval have demonstrated the performance of our approach comparatively to state-of-the-art methods. © 2023},
note = {Publisher: Elsevier B.V.},
keywords = {Color texture retrieval, Content-based, Content-based color-texture retrieval, Convolution, convolutional neural network, Gaussians, Image retrieval, Image texture, Mixture of multivariate generalized gaussians, Multi-scale Decomposition, Subbands, Texture representation, Textures},
pubstate = {published},
tppubtype = {article}
}
We present a unified statistical model for multivariate and multi-modal texture representation. This model is based on the formalism of finite mixtures of multivariate generalized Gaussians (MoMGG) which enables to build a compact and accurate representation of texture images using multi-resolution texture transforms. The MoMGG model enables to describe the joint statistics of subbands in different scales and orientations, as well as between adjacent locations within the same subband, providing a precise description of the texture layout. It can also combine different multi-scale transforms to build a richer and more representative texture signature for image similarity measurement. We tested our model on both traditional texture transforms (e.g., wavelets, contourlets, maximum response filter) and convolution neural networks (CNNs) features (e.g., ResNet, SqueezeNet). Experiments on color-texture image retrieval have demonstrated the performance of our approach comparatively to state-of-the-art methods. © 2023