
Slide

Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société
de Recherche et d’Innovation
en Cybersécurité et Société
1.
Amirkhani, D.; Allili, M. S.; Hebbache, L.; Hammouche, N.; Lapointe, J.
Visual Concrete Bridge Defect Classification and Detection Using Deep Learning: A Systematic Review Article de journal
Dans: IEEE Transactions on Intelligent Transportation Systems, p. 1–23, 2024, ISSN: 15249050, (Publisher: Institute of Electrical and Electronics Engineers Inc.).
Résumé | Liens | BibTeX | Étiquettes: Annotation, Annotations, Bridges, Classification, Concrete, Concrete bridge defect, Concrete bridge defects, Concrete bridges, Concrete defects, Concretes, Deep learning, Defect classification, Defect detection, Defects, Detection, Inspection, Reviews, Segmentation, Taxonomies, Visualization
@article{amirkhani_visual_2024,
title = {Visual Concrete Bridge Defect Classification and Detection Using Deep Learning: A Systematic Review},
author = {D. Amirkhani and M. S. Allili and L. Hebbache and N. Hammouche and J. Lapointe},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186994244&doi=10.1109%2fTITS.2024.3365296&partnerID=40&md5=a9228252d620ad6d444cc395296ebac2},
doi = {10.1109/TITS.2024.3365296},
issn = {15249050},
year = {2024},
date = {2024-01-01},
journal = {IEEE Transactions on Intelligent Transportation Systems},
pages = {1–23},
abstract = {Visual inspection is an important process for maintaining bridges in road transportation systems, and preventing catastrophic events and tragedies. In this process, accurate and automatic concrete defect classification and detection are major components to ensure early identification of any issue that can compromise the bridge safety and integrity. While a tremendous body of research has been proposed in the last decades for addressing these problems, the advent of deep learning unleashed huge opportunities for building more accurate and efficient methods. Our aim in this survey is to study the recent progress of vision-based concrete bridge defect classification and detection in the deep learning era. Our review encompasses major aspects underlying typical frameworks, which include concrete defect taxonomy, public datasets and evaluation metrics. We provide also a taxonomy of deep-learning-based classification and detection algorithms with a detailed discussion of their advantages and limitations. We also benchmark baseline models for classification and detection, using two popular datasets. We finally discuss important challenges of concrete defect classification and detection, and promising research avenues to build better models and integrate them in real-world visual inspection systems, which warrant further scientific investigation. IEEE},
note = {Publisher: Institute of Electrical and Electronics Engineers Inc.},
keywords = {Annotation, Annotations, Bridges, Classification, Concrete, Concrete bridge defect, Concrete bridge defects, Concrete bridges, Concrete defects, Concretes, Deep learning, Defect classification, Defect detection, Defects, Detection, Inspection, Reviews, Segmentation, Taxonomies, Visualization},
pubstate = {published},
tppubtype = {article}
}
Visual inspection is an important process for maintaining bridges in road transportation systems, and preventing catastrophic events and tragedies. In this process, accurate and automatic concrete defect classification and detection are major components to ensure early identification of any issue that can compromise the bridge safety and integrity. While a tremendous body of research has been proposed in the last decades for addressing these problems, the advent of deep learning unleashed huge opportunities for building more accurate and efficient methods. Our aim in this survey is to study the recent progress of vision-based concrete bridge defect classification and detection in the deep learning era. Our review encompasses major aspects underlying typical frameworks, which include concrete defect taxonomy, public datasets and evaluation metrics. We provide also a taxonomy of deep-learning-based classification and detection algorithms with a detailed discussion of their advantages and limitations. We also benchmark baseline models for classification and detection, using two popular datasets. We finally discuss important challenges of concrete defect classification and detection, and promising research avenues to build better models and integrate them in real-world visual inspection systems, which warrant further scientific investigation. IEEE