Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Afficher tous

12 entrées « 1 de 2 »
1.

Bacha, S.; Allili, M. S.; Kerbedj, T.; Chahboub, R.

Investigating food pairing hypothesis based on deep learning: Case of Algerian cuisine Article de journal

Dans: International Journal of Gastronomy and Food Science, vol. 39, 2025, ISSN: 1878450X (ISSN), (Publisher: AZTI-Tecnalia).

Résumé | Liens | BibTeX | Étiquettes: Algerian cuisine, Computational gastronomy, Deep learning, Food pairing hypothesis (FPH), Spectral clustering

2.

Bouafia, Y.; Allili, M. S.; Hebbache, L.; Guezouli, L.

SES-ReNet: Lightweight deep learning model for human detection in hazy weather conditions Article de journal

Dans: Signal Processing: Image Communication, vol. 130, 2025, ISSN: 09235965 (ISSN), (Publisher: Elsevier B.V.).

Résumé | Liens | BibTeX | Étiquettes: Condition, Deep learning, face recognition, Hazy weather, Human detection, Knowledge distillation, Learning models, Lightweight Retinanet, Outdoor scenes, Personal safety, Personal security, Safety and securities

3.

Allaoui, M. L.; Allili, M. S.

MEDiXNet: A Robust Mixture of Expert Dermatological Imaging Networks for Skin Lesion Segmentation Article d'actes

Dans: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn., IEEE Computer Society, 2024, ISBN: 19457928 (ISSN); 979-835031333-8 (ISBN), (Journal Abbreviation: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.).

Résumé | Liens | BibTeX | Étiquettes: Attention mechanism, Attention mechanisms, Blurred boundaries, Cancer detection, Deep learning, Dermatology, Expert systems, Image segmentation, Lesion segmentations, Mixture of experts, Mixture of experts model, Mixture-of-experts model, Salient regions, Skin cancers, Skin lesion, Skin lesion segmentation

4.

Joudeh, I. O.; Cretu, A. -M.; Bouchard, S.

Predicting the Arousal and Valence Values of Emotional States Using Learned, Predesigned, and Deep Visual Features † Article de journal

Dans: Sensors, vol. 24, no 13, 2024, ISSN: 14248220 (ISSN), (Publisher: Multidisciplinary Digital Publishing Institute (MDPI)).

Résumé | Liens | BibTeX | Étiquettes: adult, Affective interaction, Arousal, artificial neural network, Cognitive state, Cognitive/emotional state, Collaborative interaction, computer, Convolutional neural networks, correlation coefficient, Deep learning, emotion, Emotional state, Emotions, female, Forecasting, Helmet mounted displays, human, Humans, Learning algorithms, Learning systems, Long short-term memory, Machine learning, Machine-learning, male, Mean square error, Neural networks, physiology, Regression, Root mean squared errors, Video recording, virtual reality, Visual feature, visual features

5.

Amirkhani, D.; Allili, M. S.; Hebbache, L.; Hammouche, N.; Lapointe, J.

Visual Concrete Bridge Defect Classification and Detection Using Deep Learning: A Systematic Review Article de journal

Dans: IEEE Transactions on Intelligent Transportation Systems, p. 1–23, 2024, ISSN: 15249050, (Publisher: Institute of Electrical and Electronics Engineers Inc.).

Résumé | Liens | BibTeX | Étiquettes: Annotation, Annotations, Bridges, Classification, Concrete, Concrete bridge defect, Concrete bridge defects, Concrete bridges, Concrete defects, Concretes, Deep learning, Defect classification, Defect detection, Defects, Detection, Inspection, Reviews, Segmentation, Taxonomies, Visualization

6.

Nouboukpo, A.; Allaoui, M. L.; Allili, M. S.

Multi-scale spatial consistency for deep semi-supervised skin lesion segmentation Article de journal

Dans: Engineering Applications of Artificial Intelligence, vol. 135, 2024, ISSN: 09521976 (ISSN), (Publisher: Elsevier Ltd).

Résumé | Liens | BibTeX | Étiquettes: Deep learning, Dermatology, Image segmentation, Lesion segmentations, Medical imaging, Multi-scales, Semi-supervised, Semi-supervised learning, Skin lesion, Skin lesion segmentation, Spatial consistency, Spatially constrained mixture model, Spatially-constrained mixture models, Supervised learning, UNets, Unlabeled data

7.

Hebbache, L.; Amirkhani, D.; Allili, M. S.; Hammouche, N.; Lapointe, J. -F.

Leveraging Saliency in Single-Stage Multi-Label Concrete Defect Detection Using Unmanned Aerial Vehicle Imagery Article de journal

Dans: Remote Sensing, vol. 15, no 5, 2023, ISSN: 20724292, (Publisher: MDPI).

Résumé | Liens | BibTeX | Étiquettes: Aerial vehicle, Aircraft detection, Antennas, Computational efficiency, Concrete defects, Deep learning, Defect detection, extraction, Feature extraction, Features extraction, Image acquisition, Image Enhancement, Multi-labels, One-stage concrete defect detection, Saliency, Single stage, Unmanned aerial vehicles (UAV), Unmanned areal vehicle imagery

8.

Joudeh, I. O.; Cretu, A. -M.; Bouchard, S.; Guimond, S.

Prediction of Continuous Emotional Measures through Physiological and Visual Data † Article de journal

Dans: Sensors, vol. 23, no 12, 2023, ISSN: 14248220, (Publisher: MDPI).

Résumé | Liens | BibTeX | Étiquettes: Affect recognition, Affective state, Arousal, Data-source, Deep learning, Electrocardiography, emotion, Emotion Recognition, Emotions, face recognition, Faces detection, Forecasting, human, Humans, Images processing, Learning systems, Machine learning, Machine-learning, mental disease, Mental Disorders, Physiological data, physiology, Signal-processing, Statistical tests, Video recording, Virtual-reality environment

9.

Lapointe, J. -F.; Allili, M. S.; Belliveau, L.; Hebbache, L.; Amirkhani, D.; Sekkati, H.

AI-AR for Bridge Inspection by Drone Article de journal

Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13318 LNCS, p. 302–313, 2022, ISSN: 03029743, (ISBN: 9783031060144 Publisher: Springer Science and Business Media Deutschland GmbH).

Résumé | Liens | BibTeX | Étiquettes: AR, augmented reality, Bridge inspection, Bridges, Deep learning, Drone, Drones, Human-in-the-loop, Inspection, Regular inspections, Remote guidance, RPAS, Transportation infrastructures, Visual inspection

10.

Abdollahzadeh, S.; Proulx, P. -L.; Allili, M. S.; Lapointe, J. -F.

Safe Landing Zones Detection for UAVs Using Deep Regression Article d'actes

Dans: Proceedings - 2022 19th Conference on Robots and Vision, CRV 2022, p. 213–218, Institute of Electrical and Electronics Engineers Inc., 2022, ISBN: 978-1-66549-774-9.

Résumé | Liens | BibTeX | Étiquettes: Aerial vehicle, Air navigation, Aircraft detection, Antennas, Automatic unmanned aerial vehicle navigation, Deep learning, Deep regression, Landing, Landing zones, Safe landing, Safe landing zone, Semantic segmentation, Semantics, Unmanned aerial vehicles (UAV), Urban areas, Vehicle navigation, Zone detection

12 entrées « 1 de 2 »

Partager cette page