Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Afficher tous

1.

Joudeh, I. O.; Cretu, A. -M.; Bouchard, S.

Predicting the Arousal and Valence Values of Emotional States Using Learned, Predesigned, and Deep Visual Features † Article de journal

Dans: Sensors, vol. 24, no 13, 2024, ISSN: 14248220 (ISSN), (Publisher: Multidisciplinary Digital Publishing Institute (MDPI)).

Résumé | Liens | BibTeX | Étiquettes: adult, Affective interaction, Arousal, artificial neural network, Cognitive state, Cognitive/emotional state, Collaborative interaction, computer, Convolutional neural networks, correlation coefficient, Deep learning, emotion, Emotional state, Emotions, female, Forecasting, Helmet mounted displays, human, Humans, Learning algorithms, Learning systems, Long short-term memory, Machine learning, Machine-learning, male, Mean square error, Neural networks, physiology, Regression, Root mean squared errors, Video recording, virtual reality, Visual feature, visual features

Partager cette page