

de Recherche et d’Innovation
en Cybersécurité et Société
Joudeh, I. O.; Cretu, A. -M.; Bouchard, S.
Predicting the Arousal and Valence Values of Emotional States Using Learned, Predesigned, and Deep Visual Features † Article de journal
Dans: Sensors, vol. 24, no 13, 2024, ISSN: 14248220 (ISSN), (Publisher: Multidisciplinary Digital Publishing Institute (MDPI)).
Résumé | Liens | BibTeX | Étiquettes: adult, Affective interaction, Arousal, artificial neural network, Cognitive state, Cognitive/emotional state, Collaborative interaction, computer, Convolutional neural networks, correlation coefficient, Deep learning, emotion, Emotional state, Emotions, female, Forecasting, Helmet mounted displays, human, Humans, Learning algorithms, Learning systems, Long short-term memory, Machine learning, Machine-learning, male, Mean square error, Neural networks, physiology, Regression, Root mean squared errors, Video recording, virtual reality, Visual feature, visual features
@article{joudeh_predicting_2024,
title = {Predicting the Arousal and Valence Values of Emotional States Using Learned, Predesigned, and Deep Visual Features †},
author = {I. O. Joudeh and A. -M. Cretu and S. Bouchard},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198382238&doi=10.3390%2fs24134398&partnerID=40&md5=cefa8b2e2c044d02f99662af350007db},
doi = {10.3390/s24134398},
issn = {14248220 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Sensors},
volume = {24},
number = {13},
abstract = {The cognitive state of a person can be categorized using the circumplex model of emotional states, a continuous model of two dimensions: arousal and valence. The purpose of this research is to select a machine learning model(s) to be integrated into a virtual reality (VR) system that runs cognitive remediation exercises for people with mental health disorders. As such, the prediction of emotional states is essential to customize treatments for those individuals. We exploit the Remote Collaborative and Affective Interactions (RECOLA) database to predict arousal and valence values using machine learning techniques. RECOLA includes audio, video, and physiological recordings of interactions between human participants. To allow learners to focus on the most relevant data, features are extracted from raw data. Such features can be predesigned, learned, or extracted implicitly using deep learners. Our previous work on video recordings focused on predesigned and learned visual features. In this paper, we extend our work onto deep visual features. Our deep visual features are extracted using the MobileNet-v2 convolutional neural network (CNN) that we previously trained on RECOLA’s video frames of full/half faces. As the final purpose of our work is to integrate our solution into a practical VR application using head-mounted displays, we experimented with half faces as a proof of concept. The extracted deep features were then used to predict arousal and valence values via optimizable ensemble regression. We also fused the extracted visual features with the predesigned visual features and predicted arousal and valence values using the combined feature set. In an attempt to enhance our prediction performance, we further fused the predictions of the optimizable ensemble model with the predictions of the MobileNet-v2 model. After decision fusion, we achieved a root mean squared error (RMSE) of 0.1140, a Pearson’s correlation coefficient (PCC) of 0.8000, and a concordance correlation coefficient (CCC) of 0.7868 on arousal predictions. We achieved an RMSE of 0.0790, a PCC of 0.7904, and a CCC of 0.7645 on valence predictions. © 2024 by the authors.},
note = {Publisher: Multidisciplinary Digital Publishing Institute (MDPI)},
keywords = {adult, Affective interaction, Arousal, artificial neural network, Cognitive state, Cognitive/emotional state, Collaborative interaction, computer, Convolutional neural networks, correlation coefficient, Deep learning, emotion, Emotional state, Emotions, female, Forecasting, Helmet mounted displays, human, Humans, Learning algorithms, Learning systems, Long short-term memory, Machine learning, Machine-learning, male, Mean square error, Neural networks, physiology, Regression, Root mean squared errors, Video recording, virtual reality, Visual feature, visual features},
pubstate = {published},
tppubtype = {article}
}
Messaoudi, H.; Belaid, A.; Allaoui, M. L.; Zetout, A.; Allili, M. S.; Tliba, S.; Salem, D. Ben; Conze, P. -H.
Efficient Embedding Network for 3D Brain Tumor Segmentation Article de journal
Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12658 LNCS, p. 252–262, 2021, ISSN: 03029743, (ISBN: 9783030720834 Publisher: Springer Science and Business Media Deutschland GmbH).
Résumé | Liens | BibTeX | Étiquettes: 3D medical image processing, Brain, Brain tumor segmentation, Classification networks, Convolutional neural networks, Deep learning, Embedding network, Image segmentation, Large dataset, Large datasets, Medical imaging, Natural images, Net networks, Semantic segmentation, Semantics, Signal encoding, Tumors
@article{messaoudi_efficient_2021,
title = {Efficient Embedding Network for 3D Brain Tumor Segmentation},
author = {H. Messaoudi and A. Belaid and M. L. Allaoui and A. Zetout and M. S. Allili and S. Tliba and D. Ben Salem and P. -H. Conze},
editor = {Bakas S. Crimi A.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107387134&doi=10.1007%2f978-3-030-72084-1_23&partnerID=40&md5=b3aa3516b0465a1bf5611db4727d95f1},
doi = {10.1007/978-3-030-72084-1_23},
issn = {03029743},
year = {2021},
date = {2021-01-01},
journal = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
volume = {12658 LNCS},
pages = {252–262},
abstract = {3D medical image processing with deep learning greatly suffers from a lack of data. Thus, studies carried out in this field are limited compared to works related to 2D natural image analysis, where very large datasets exist. As a result, powerful and efficient 2D convolutional neural networks have been developed and trained. In this paper, we investigate a way to transfer the performance of a two-dimensional classification network for the purpose of three-dimensional semantic segmentation of brain tumors. We propose an asymmetric U-Net network by incorporating the EfficientNet model as part of the encoding branch. As the input data is in 3D, the first layers of the encoder are devoted to the reduction of the third dimension in order to fit the input of the EfficientNet network. Experimental results on validation and test data from the BraTS 2020 challenge demonstrate that the proposed method achieve promising performance. © 2021, Springer Nature Switzerland AG.},
note = {ISBN: 9783030720834
Publisher: Springer Science and Business Media Deutschland GmbH},
keywords = {3D medical image processing, Brain, Brain tumor segmentation, Classification networks, Convolutional neural networks, Deep learning, Embedding network, Image segmentation, Large dataset, Large datasets, Medical imaging, Natural images, Net networks, Semantic segmentation, Semantics, Signal encoding, Tumors},
pubstate = {published},
tppubtype = {article}
}