Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Afficher tous

28 entrées « 1 de 3 »
1.

Allaoui, M. L.; Allili, M. S.

MEDiXNet: A Robust Mixture of Expert Dermatological Imaging Networks for Skin Lesion Segmentation Article d'actes

Dans: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn., IEEE Computer Society, 2024, ISBN: 19457928 (ISSN); 979-835031333-8 (ISBN), (Journal Abbreviation: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.).

Résumé | Liens | BibTeX | Étiquettes: Attention mechanism, Attention mechanisms, Blurred boundaries, Cancer detection, Deep learning, Dermatology, Expert systems, Image segmentation, Lesion segmentations, Mixture of experts, Mixture of experts model, Mixture-of-experts model, Salient regions, Skin cancers, Skin lesion, Skin lesion segmentation

2.

Nouboukpo, A.; Allaoui, M. L.; Allili, M. S.

Multi-scale spatial consistency for deep semi-supervised skin lesion segmentation Article de journal

Dans: Engineering Applications of Artificial Intelligence, vol. 135, 2024, ISSN: 09521976 (ISSN), (Publisher: Elsevier Ltd).

Résumé | Liens | BibTeX | Étiquettes: Deep learning, Dermatology, Image segmentation, Lesion segmentations, Medical imaging, Multi-scales, Semi-supervised, Semi-supervised learning, Skin lesion, Skin lesion segmentation, Spatial consistency, Spatially constrained mixture model, Spatially-constrained mixture models, Supervised learning, UNets, Unlabeled data

3.

Messaoudi, H.; Belaid, A.; Allaoui, M. L.; Zetout, A.; Allili, M. S.; Tliba, S.; Salem, D. Ben; Conze, P. -H.

Efficient Embedding Network for 3D Brain Tumor Segmentation Article de journal

Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12658 LNCS, p. 252–262, 2021, ISSN: 03029743, (ISBN: 9783030720834 Publisher: Springer Science and Business Media Deutschland GmbH).

Résumé | Liens | BibTeX | Étiquettes: 3D medical image processing, Brain, Brain tumor segmentation, Classification networks, Convolutional neural networks, Deep learning, Embedding network, Image segmentation, Large dataset, Large datasets, Medical imaging, Natural images, Net networks, Semantic segmentation, Semantics, Signal encoding, Tumors

4.

Nouboukpo, A.; Allili, M. S.

Spatially-coherent segmentation using hierarchical gaussian mixture reduction based on cauchy-schwarz divergence Article de journal

Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11662 LNCS, p. 388–396, 2019, ISSN: 03029743, (ISBN: 9783030272012 Publisher: Springer Verlag).

Résumé | Liens | BibTeX | Étiquettes: Cauchy-Schwarz divergence, Foreground segmentation, Gaussian distribution, Gaussian Mixture Model, Gaussian mixture reduction, Image analysis, Image segmentation, Mixture reductions, Reduction algorithms, Reduction techniques, State-of-art methods

5.

Filali, I.; Allili, M. S.; Benblidia, N.

Multi-graph based salient object detection Article de journal

Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9730, p. 318–324, 2016, ISSN: 03029743, (ISBN: 9783319415000 Publisher: Springer Verlag).

Résumé | Liens | BibTeX | Étiquettes: Graphic methods, Image analysis, Image segmentation, Multi-layer graphs, Multi-scale image decomposition, Multiscale segmentation, Natural images, Object detection, Object recognition, Objective functions, Saliency map, Salient object detection, Salient objects

6.

Allili, M. S.; Ziou, D.

Likelihood-based feature relevance for figure-ground segmentation in images and videos Article de journal

Dans: Neurocomputing, vol. 167, p. 658–670, 2015, ISSN: 09252312, (Publisher: Elsevier).

Résumé | Liens | BibTeX | Étiquettes: accuracy, algorithm, article, calculation, Feature relevance, Figure-ground segmentations, Gaussian mixture model (GMMs), Image analysis, Image Enhancement, image quality, Image segmentation, Level Set, linear system, mathematical analysis, mathematical model, Negative examples, priority journal, Video cameras, videorecording

7.

Boulmerka, A.; Allili, M. Saïd; Ait-Aoudia, S.

A generalized multiclass histogram thresholding approach based on mixture modelling Article de journal

Dans: Pattern Recognition, vol. 47, no 3, p. 1330–1348, 2014, ISSN: 00313203.

Résumé | Liens | BibTeX | Étiquettes: Arbitrary number, Conditional distribution, Gaussian distribution, Gaussian noise (electronic), Generalized Gaussian Distributions, Graphic methods, Histogram thresholding, Image segmentation, Minimum error thresholding, Mixture-modelling, Mixtures, State-of-the-art techniques, Statistical methods, Thresholding, Thresholding methods

8.

Allili, M. S.

Wavelet modeling using finite mixtures of generalized Gaussian distributions: Application to texture discrimination and retrieval Article de journal

Dans: IEEE Transactions on Image Processing, vol. 21, no 4, p. 1452–1464, 2012, ISSN: 10577149.

Résumé | Liens | BibTeX | Étiquettes: algorithm, Algorithms, article, Automated, automated pattern recognition, computer assisted diagnosis, Computer Simulation, Computer-Assisted, Data Interpretation, Finite mixtures, Generalized Gaussian, Generalized Gaussian Distributions, Image Enhancement, Image Interpretation, Image segmentation, Imaging, Kullback Leibler divergence, Marginal distribution, methodology, Mixtures, Models, Monte Carlo methods, Monte Carlo sampling, Normal Distribution, Pattern Recognition, Performance improvements, reproducibility, Reproducibility of Results, Sensitivity and Specificity, Similarity measure, State-of-the-art approach, Statistical, statistical analysis, statistical model, Texture data set, Texture discrimination, Texture modeling, Textures, three dimensional imaging, Three-Dimensional, Wavelet Analysis, Wavelet coefficients, Wavelet decomposition, Wavelet modeling

9.

Boulmerka, A.; Allili, M. S.

Thresholding-based segmentation revisited using mixtures of generalized Gaussian distributions Article d'actes

Dans: Proceedings - International Conference on Pattern Recognition, p. 2894–2897, Tsukuba, 2012, ISBN: 978-4-9906441-0-9, (ISSN: 10514651).

Résumé | Liens | BibTeX | Étiquettes: Arbitrary number, Gaussian noise (electronic), Generalized Gaussian Distributions, Heavy-tailed, Image segmentation, Kittler, Minimum error thresholding, Multi-modal, New approaches, Non-Gaussian, Otsu's method, Pattern Recognition, State-of-the-art techniques, Synthetic data

10.

Larivière, G.; Allili, M. S.

A learning probabilistic approach for object segmentation Article d'actes

Dans: Proceedings of the 2012 9th Conference on Computer and Robot Vision, CRV 2012, p. 86–93, Toronto, ON, 2012, ISBN: 978-076954683-4 (ISBN), (Journal Abbreviation: Proc. Conf. Comput. Rob. Vis., CRV).

Résumé | Liens | BibTeX | Étiquettes: Algorithms, Computer vision, fragments, Image segmentation, Mean shift algorithm, mean-shift algorithm, Object recognition, Object segmentation, Object shape, Optimal segmentation, Probabilistic approaches, Probabilistic Learning, Segmentation process

28 entrées « 1 de 3 »

Partager cette page