Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Afficher tous

1.

Yapi, D.; Allili, M. S.

Multi-Band Texture Modeling Using Finite Mixtures of Multivariate Generalized Gaussian Distributions Article d'actes

Dans: Proceedings - International Conference on Pattern Recognition, p. 464–469, Institute of Electrical and Electronics Engineers Inc., 2022, ISBN: 978-1-66549-062-7, (ISSN: 10514651).

Résumé | Liens | BibTeX | Étiquettes: Color texture retrieval, Finite mixtures, Gaussian distribution, Gaussians, Image retrieval, Image texture, Mixture of multivariate generalized gaussians, Multi band, Multi-scale Decomposition, Multivariate generalized gaussian distributions, Statistic modeling, Subbands, Texture models, Textures

2.

Allili, M. S.

Wavelet modeling using finite mixtures of generalized Gaussian distributions: Application to texture discrimination and retrieval Article de journal

Dans: IEEE Transactions on Image Processing, vol. 21, no 4, p. 1452–1464, 2012, ISSN: 10577149.

Résumé | Liens | BibTeX | Étiquettes: algorithm, Algorithms, article, Automated, automated pattern recognition, computer assisted diagnosis, Computer Simulation, Computer-Assisted, Data Interpretation, Finite mixtures, Generalized Gaussian, Generalized Gaussian Distributions, Image Enhancement, Image Interpretation, Image segmentation, Imaging, Kullback Leibler divergence, Marginal distribution, methodology, Mixtures, Models, Monte Carlo methods, Monte Carlo sampling, Normal Distribution, Pattern Recognition, Performance improvements, reproducibility, Reproducibility of Results, Sensitivity and Specificity, Similarity measure, State-of-the-art approach, Statistical, statistical analysis, statistical model, Texture data set, Texture discrimination, Texture modeling, Textures, three dimensional imaging, Three-Dimensional, Wavelet Analysis, Wavelet coefficients, Wavelet decomposition, Wavelet modeling

3.

Allili, M. S.; Baaziz, N.

Contourlet-based texture retrieval using a mixture of generalized Gaussian distributions Article de journal

Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6855 LNCS, no PART 2, p. 446–454, 2011, ISSN: 03029743, (ISBN: 9783642236778 Place: Seville).

Résumé | Liens | BibTeX | Étiquettes: Contourlet transform, Contourlets, Distribution modelling, Finite mixtures, Gaussian distribution, Generalized Gaussian Distributions, Image analysis, Kullback-Leibler divergence, Mixtures, Monte-Carlo sampling, Probability density function, Similarity measure, Statistical representations, Texture discrimination, Texture retrieval, Textures

4.

Ziou, D.; Bouguila, N.; Allili, M. S.; El-Zaart, A.

Finite Gamma mixture modelling using minimum message length inference: Application to SAR image analysis Article de journal

Dans: International Journal of Remote Sensing, vol. 30, no 3, p. 771–792, 2009, ISSN: 01431161, (Publisher: Taylor and Francis Ltd.).

Résumé | Liens | BibTeX | Étiquettes: Change detection, Determining the number of clusters, estimation method, finite element method, Finite mixtures, Gamma distribution, Gamma mixtures, Image analysis, Image processing, Image segmentation, Minimum message lengths, Mixtures, Number of clusters, numerical model, Probability distributions, Radar imaging, SAR image segmentation, Synthetic aperture radar, Unsupervised learning

Partager cette page