

de Recherche et d’Innovation
en Cybersécurité et Société
Allili, M. S.
Wavelet modeling using finite mixtures of generalized Gaussian distributions: Application to texture discrimination and retrieval Article de journal
Dans: IEEE Transactions on Image Processing, vol. 21, no 4, p. 1452–1464, 2012, ISSN: 10577149.
Résumé | Liens | BibTeX | Étiquettes: algorithm, Algorithms, article, Automated, automated pattern recognition, computer assisted diagnosis, Computer Simulation, Computer-Assisted, Data Interpretation, Finite mixtures, Generalized Gaussian, Generalized Gaussian Distributions, Image Enhancement, Image Interpretation, Image segmentation, Imaging, Kullback Leibler divergence, Marginal distribution, methodology, Mixtures, Models, Monte Carlo methods, Monte Carlo sampling, Normal Distribution, Pattern Recognition, Performance improvements, reproducibility, Reproducibility of Results, Sensitivity and Specificity, Similarity measure, State-of-the-art approach, Statistical, statistical analysis, statistical model, Texture data set, Texture discrimination, Texture modeling, Textures, three dimensional imaging, Three-Dimensional, Wavelet Analysis, Wavelet coefficients, Wavelet decomposition, Wavelet modeling
@article{allili_wavelet_2012,
title = {Wavelet modeling using finite mixtures of generalized Gaussian distributions: Application to texture discrimination and retrieval},
author = {M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859096106&doi=10.1109%2fTIP.2011.2170701&partnerID=40&md5=0420facdc04978ad84bea3126bc1183a},
doi = {10.1109/TIP.2011.2170701},
issn = {10577149},
year = {2012},
date = {2012-01-01},
journal = {IEEE Transactions on Image Processing},
volume = {21},
number = {4},
pages = {1452–1464},
abstract = {This paper addresses statistical-based texture modeling using wavelets. We propose a new approach to represent the marginal distribution of the wavelet coefficients using finite mixtures of generalized Gaussian (MoGG) distributions. The MoGG captures a wide range of histogram shapes, which provides better description and discrimination of texture than using single probability density functions (pdf's), as proposed by recent state-of-the-art approaches. Moreover, we propose a model similarity measure based on Kullback-Leibler divergence (KLD) approximation using Monte Carlo sampling methods. Through experiments on two popular texture data sets, we show that our approach yields significant performance improvements for texture discrimination and retrieval, as compared with recent methods of statistical-based wavelet modeling. © 2011 IEEE.},
keywords = {algorithm, Algorithms, article, Automated, automated pattern recognition, computer assisted diagnosis, Computer Simulation, Computer-Assisted, Data Interpretation, Finite mixtures, Generalized Gaussian, Generalized Gaussian Distributions, Image Enhancement, Image Interpretation, Image segmentation, Imaging, Kullback Leibler divergence, Marginal distribution, methodology, Mixtures, Models, Monte Carlo methods, Monte Carlo sampling, Normal Distribution, Pattern Recognition, Performance improvements, reproducibility, Reproducibility of Results, Sensitivity and Specificity, Similarity measure, State-of-the-art approach, Statistical, statistical analysis, statistical model, Texture data set, Texture discrimination, Texture modeling, Textures, three dimensional imaging, Three-Dimensional, Wavelet Analysis, Wavelet coefficients, Wavelet decomposition, Wavelet modeling},
pubstate = {published},
tppubtype = {article}
}
Allili, M. S.; Baaziz, N.
Contourlet-based texture retrieval using a mixture of generalized Gaussian distributions Article de journal
Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6855 LNCS, no PART 2, p. 446–454, 2011, ISSN: 03029743, (ISBN: 9783642236778 Place: Seville).
Résumé | Liens | BibTeX | Étiquettes: Contourlet transform, Contourlets, Distribution modelling, Finite mixtures, Gaussian distribution, Generalized Gaussian Distributions, Image analysis, Kullback-Leibler divergence, Mixtures, Monte-Carlo sampling, Probability density function, Similarity measure, Statistical representations, Texture discrimination, Texture retrieval, Textures
@article{allili_contourlet-based_2011,
title = {Contourlet-based texture retrieval using a mixture of generalized Gaussian distributions},
author = {M. S. Allili and N. Baaziz},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052796353&doi=10.1007%2f978-3-642-23678-5_53&partnerID=40&md5=fde8aaeea1609c81747b0ab27a8c78ce},
doi = {10.1007/978-3-642-23678-5_53},
issn = {03029743},
year = {2011},
date = {2011-01-01},
journal = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
volume = {6855 LNCS},
number = {PART 2},
pages = {446–454},
abstract = {We address the texture retrieval problem using contourlet-based statistical representation. We propose a new contourlet distribution modelling using finite mixtures of generalized Gaussian distributions (MoGG). The MoGG allows to capture a wide range of contourlet histogram shapes, which provides better description and discrimination of texture than using single probability density functions (pdfs). We propose a model similarity measure based on Kullback-Leibler divergence (KLD) approximation using Monte-Carlo sampling methods. We show that our approach using a redundant contourlet transform yields better texture discrimination and retrieval results than using other methods of statistical-based wavelet/contourlet modelling. © 2011 Springer-Verlag.},
note = {ISBN: 9783642236778
Place: Seville},
keywords = {Contourlet transform, Contourlets, Distribution modelling, Finite mixtures, Gaussian distribution, Generalized Gaussian Distributions, Image analysis, Kullback-Leibler divergence, Mixtures, Monte-Carlo sampling, Probability density function, Similarity measure, Statistical representations, Texture discrimination, Texture retrieval, Textures},
pubstate = {published},
tppubtype = {article}
}
Allili, M. S.
Wavelet-based texture retrieval using a mixture of generalized Gaussian distributions Article d'actes
Dans: Proceedings - International Conference on Pattern Recognition, p. 3143–3146, Istanbul, 2010, ISBN: 978-0-7695-4109-9, (ISSN: 10514651).
Résumé | Liens | BibTeX | Étiquettes: Avelet decomposition, Gaussian distribution, Generalized Gaussian Distributions, Image retrieval, KLD, Kullback-Leibler distance, Marginal distribution, Metropolis-Hastings samplings, Mixtures, Pattern Recognition, Probability density function, Probability density function (pdf), Similarity measurements, Statistical methods, Statistical scheme, Texture discrimination, Texture energy, Texture image retrieval, Texture retrieval, Textures, Wavelet coefficients, Wavelet representation
@inproceedings{allili_wavelet-based_2010,
title = {Wavelet-based texture retrieval using a mixture of generalized Gaussian distributions},
author = {M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-78149489822&doi=10.1109%2fICPR.2010.769&partnerID=40&md5=bf29f6057b57f85a0d83ac16bb4afaf5},
doi = {10.1109/ICPR.2010.769},
isbn = {978-0-7695-4109-9},
year = {2010},
date = {2010-01-01},
booktitle = {Proceedings - International Conference on Pattern Recognition},
pages = {3143–3146},
address = {Istanbul},
abstract = {In this paper, we address the texture retrieval problem using wavelet distribution. We propose a new statistical scheme to represent the marginal distribution of the wavelet coefficients using a mixture of generalized Gaussian distributions (MoGG). The MoGG allows to capture a wide range of histogram shapes, which provides a better description of texture and enhances texture discrimination. We propose a similarity measurement based on Kullback-Leibler distance (KLD), which is calculated using MCMC Metropolis-Hastings sampling algorithm. We show that our approach yields better texture retrieval results than previous methods using only a single probability density function (pdf) for wavelet representation, or texture energy distribution. © 2010 IEEE.},
note = {ISSN: 10514651},
keywords = {Avelet decomposition, Gaussian distribution, Generalized Gaussian Distributions, Image retrieval, KLD, Kullback-Leibler distance, Marginal distribution, Metropolis-Hastings samplings, Mixtures, Pattern Recognition, Probability density function, Probability density function (pdf), Similarity measurements, Statistical methods, Statistical scheme, Texture discrimination, Texture energy, Texture image retrieval, Texture retrieval, Textures, Wavelet coefficients, Wavelet representation},
pubstate = {published},
tppubtype = {inproceedings}
}