Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Afficher tous

11 entrées « 1 de 2 »
1.

Nouboukpo, A.; Allili, M. S.

Weakly Semi Supervised learning based Mixture Model With Two-Level Constraints Article d'actes

Dans: A., Premaratne K. Benferhot S. Antonucci (Ed.): Proceedings of the International Florida Artificial Intelligence Research Society Conference, FLAIRS, Florida Online Journals, University of Florida, 2021, (ISSN: 23340754).

Résumé | Liens | BibTeX | Étiquettes: Classification and clustering, Group structure, Learn+, Mixture components, Mixture modeling, Mixtures, Multilevels, Number of class, Prior-knowledge, Semi-supervised learning, Supervised learning, Unlabeled data

2.

Allili, M. S.; Baaziz, N.; Mejri, M.

Texture modeling using contourlets and finite mixtures of generalized gaussian distributions and applications Article de journal

Dans: IEEE Transactions on Multimedia, vol. 16, no 3, p. 772–784, 2014, ISSN: 15209210, (Publisher: Institute of Electrical and Electronics Engineers Inc.).

Résumé | Liens | BibTeX | Étiquettes: Contourlet coefficients, Contourlet transform, Defects, Directional information, Fabric texture, face recognition, Generalized Gaussian Distributions, Inspection, Mixtures, Probability density function, Probability density functions (PDFs), State-of-the-art methods, Texture retrieval, Textures

3.

Boulmerka, A.; Allili, M. Saïd; Ait-Aoudia, S.

A generalized multiclass histogram thresholding approach based on mixture modelling Article de journal

Dans: Pattern Recognition, vol. 47, no 3, p. 1330–1348, 2014, ISSN: 00313203.

Résumé | Liens | BibTeX | Étiquettes: Arbitrary number, Conditional distribution, Gaussian distribution, Gaussian noise (electronic), Generalized Gaussian Distributions, Graphic methods, Histogram thresholding, Image segmentation, Minimum error thresholding, Mixture-modelling, Mixtures, State-of-the-art techniques, Statistical methods, Thresholding, Thresholding methods

4.

Allili, M. S.

Wavelet modeling using finite mixtures of generalized Gaussian distributions: Application to texture discrimination and retrieval Article de journal

Dans: IEEE Transactions on Image Processing, vol. 21, no 4, p. 1452–1464, 2012, ISSN: 10577149.

Résumé | Liens | BibTeX | Étiquettes: algorithm, Algorithms, article, Automated, automated pattern recognition, computer assisted diagnosis, Computer Simulation, Computer-Assisted, Data Interpretation, Finite mixtures, Generalized Gaussian, Generalized Gaussian Distributions, Image Enhancement, Image Interpretation, Image segmentation, Imaging, Kullback Leibler divergence, Marginal distribution, methodology, Mixtures, Models, Monte Carlo methods, Monte Carlo sampling, Normal Distribution, Pattern Recognition, Performance improvements, reproducibility, Reproducibility of Results, Sensitivity and Specificity, Similarity measure, State-of-the-art approach, Statistical, statistical analysis, statistical model, Texture data set, Texture discrimination, Texture modeling, Textures, three dimensional imaging, Three-Dimensional, Wavelet Analysis, Wavelet coefficients, Wavelet decomposition, Wavelet modeling

5.

Allili, M. S.; Baaziz, N.

Contourlet-based texture retrieval using a mixture of generalized Gaussian distributions Article de journal

Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6855 LNCS, no PART 2, p. 446–454, 2011, ISSN: 03029743, (ISBN: 9783642236778 Place: Seville).

Résumé | Liens | BibTeX | Étiquettes: Contourlet transform, Contourlets, Distribution modelling, Finite mixtures, Gaussian distribution, Generalized Gaussian Distributions, Image analysis, Kullback-Leibler divergence, Mixtures, Monte-Carlo sampling, Probability density function, Similarity measure, Statistical representations, Texture discrimination, Texture retrieval, Textures

6.

Allili, M. S.

Wavelet-based texture retrieval using a mixture of generalized Gaussian distributions Article d'actes

Dans: Proceedings - International Conference on Pattern Recognition, p. 3143–3146, Istanbul, 2010, ISBN: 978-0-7695-4109-9, (ISSN: 10514651).

Résumé | Liens | BibTeX | Étiquettes: Avelet decomposition, Gaussian distribution, Generalized Gaussian Distributions, Image retrieval, KLD, Kullback-Leibler distance, Marginal distribution, Metropolis-Hastings samplings, Mixtures, Pattern Recognition, Probability density function, Probability density function (pdf), Similarity measurements, Statistical methods, Statistical scheme, Texture discrimination, Texture energy, Texture image retrieval, Texture retrieval, Textures, Wavelet coefficients, Wavelet representation

7.

Ziou, D.; Bouguila, N.; Allili, M. S.; El-Zaart, A.

Finite Gamma mixture modelling using minimum message length inference: Application to SAR image analysis Article de journal

Dans: International Journal of Remote Sensing, vol. 30, no 3, p. 771–792, 2009, ISSN: 01431161, (Publisher: Taylor and Francis Ltd.).

Résumé | Liens | BibTeX | Étiquettes: Change detection, Determining the number of clusters, estimation method, finite element method, Finite mixtures, Gamma distribution, Gamma mixtures, Image analysis, Image processing, Image segmentation, Minimum message lengths, Mixtures, Number of clusters, numerical model, Probability distributions, Radar imaging, SAR image segmentation, Synthetic aperture radar, Unsupervised learning

8.

Allili, M. S.; Bouguila, N.; Ziou, D.

Finite general Gaussian mixture modeling and application to image and video foreground segmentation Article de journal

Dans: Journal of Electronic Imaging, vol. 17, no 1, 2008, ISSN: 10179909.

Résumé | Liens | BibTeX | Étiquettes: Finite mixture models, Foreground segmentation, Gaussian distribution, Gaussian mixture modeling, Gaussian mixtures, Gaussians, General Gaussian distribution, Image segmentation, Information theory, Information-theoretic approach, Maximum likelihood estimation, Mixture model, Mixtures, Noisy data, Overfitting

9.

Allili, M. S.; Bouguila, N.; Ziou, D.

Online video foreground segmentation using general Gaussian mixture modeling Article d'actes

Dans: ICSPC 2007 Proceedings - 2007 IEEE International Conference on Signal Processing and Communications, p. 959–962, Dubai, 2007, ISBN: 978-1-4244-1236-5.

Résumé | Liens | BibTeX | Étiquettes: Bayesian approaches, Bayesian networks, Finite mixture models, Gaussian, Gaussian mixture modeling, Illumination changes, Image segmentation, Mixture of general gaussians (MoGG), Mixtures, MML, On-line estimations, Online videos, Parameter estimation, Signal processing, Trellis codes, Video foreground segmentation

10.

Allili, M. S.; Ziou, D.

Object contour tracking in videos by using adaptive mixture models and shape priors Article d'actes

Dans: Proceedings of the International Symposium CompIMAGE 2006 - Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications, p. 47–52, Coimbra, 2007, ISBN: 978-0-415-43349-5.

Résumé | Liens | BibTeX | Étiquettes: Active contours, Best fits, Current frames, Image matching, Maximum likelihood, Mixture models, Mixtures, Multi class, Non-static backgrounds, Object contours, Object tracking algorithms, Real video sequences, Robust tracking, Shape informations, Shape priors, Video recording, Video sequences

11 entrées « 1 de 2 »

Partager cette page