Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Afficher tous

1.

Ziou, D.; Bouguila, N.; Allili, M. S.; El-Zaart, A.

Finite Gamma mixture modelling using minimum message length inference: Application to SAR image analysis Article de journal

Dans: International Journal of Remote Sensing, vol. 30, no 3, p. 771–792, 2009, ISSN: 01431161, (Publisher: Taylor and Francis Ltd.).

Résumé | Liens | BibTeX | Étiquettes: Change detection, Determining the number of clusters, estimation method, finite element method, Finite mixtures, Gamma distribution, Gamma mixtures, Image analysis, Image processing, Image segmentation, Minimum message lengths, Mixtures, Number of clusters, numerical model, Probability distributions, Radar imaging, SAR image segmentation, Synthetic aperture radar, Unsupervised learning

Partager cette page