
Slide

Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société
de Recherche et d’Innovation
en Cybersécurité et Société
1.
Allili, M. S.; Bouguila, N.; Ziou, D.
Online video foreground segmentation using general Gaussian mixture modeling Article d'actes
Dans: ICSPC 2007 Proceedings - 2007 IEEE International Conference on Signal Processing and Communications, p. 959–962, Dubai, 2007, ISBN: 978-1-4244-1236-5.
Résumé | Liens | BibTeX | Étiquettes: Bayesian approaches, Bayesian networks, Finite mixture models, Gaussian, Gaussian mixture modeling, Illumination changes, Image segmentation, Mixture of general gaussians (MoGG), Mixtures, MML, On-line estimations, Online videos, Parameter estimation, Signal processing, Trellis codes, Video foreground segmentation
@inproceedings{allili_online_2007,
title = {Online video foreground segmentation using general Gaussian mixture modeling},
author = {M. S. Allili and N. Bouguila and D. Ziou},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-60349106169&doi=10.1109%2fICSPC.2007.4728480&partnerID=40&md5=85c72d00cc58f61baf5ff006dc44957f},
doi = {10.1109/ICSPC.2007.4728480},
isbn = {978-1-4244-1236-5},
year = {2007},
date = {2007-01-01},
booktitle = {ICSPC 2007 Proceedings - 2007 IEEE International Conference on Signal Processing and Communications},
pages = {959–962},
address = {Dubai},
abstract = {In this paper, we propose a robust video foreground modeling by using a finite mixture model of general Gaussian distributions (GGD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GGDs and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model. © 2007 IEEE.},
keywords = {Bayesian approaches, Bayesian networks, Finite mixture models, Gaussian, Gaussian mixture modeling, Illumination changes, Image segmentation, Mixture of general gaussians (MoGG), Mixtures, MML, On-line estimations, Online videos, Parameter estimation, Signal processing, Trellis codes, Video foreground segmentation},
pubstate = {published},
tppubtype = {inproceedings}
}
In this paper, we propose a robust video foreground modeling by using a finite mixture model of general Gaussian distributions (GGD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GGDs and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model. © 2007 IEEE.