
Slide

Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société
de Recherche et d’Innovation
en Cybersécurité et Société
1.
Allaoui, M. L.; Allili, M. S.
MEDiXNet: A Robust Mixture of Expert Dermatological Imaging Networks for Skin Lesion Segmentation Article d'actes
Dans: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn., IEEE Computer Society, 2024, ISBN: 19457928 (ISSN); 979-835031333-8 (ISBN), (Journal Abbreviation: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.).
Résumé | Liens | BibTeX | Étiquettes: Attention mechanism, Attention mechanisms, Blurred boundaries, Cancer detection, Deep learning, Dermatology, Expert systems, Image segmentation, Lesion segmentations, Mixture of experts, Mixture of experts model, Mixture-of-experts model, Salient regions, Skin cancers, Skin lesion, Skin lesion segmentation
@inproceedings{allaoui_medixnet_2024,
title = {MEDiXNet: A Robust Mixture of Expert Dermatological Imaging Networks for Skin Lesion Segmentation},
author = {M. L. Allaoui and M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203397643&doi=10.1109%2fISBI56570.2024.10635430&partnerID=40&md5=c95dd2122f03c944e945b684a111e741},
doi = {10.1109/ISBI56570.2024.10635430},
isbn = {19457928 (ISSN); 979-835031333-8 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.},
publisher = {IEEE Computer Society},
abstract = {Skin lesion segmentation in dermatological imaging is crucial for early skin cancer detection. However, it is challenging due to variation in lesion appearance, blurred boundaries, and the presence of artifacts. Existing segmentation methods often fall short in accurately addressing these issues. We present MEDiXNet, a novel deep learning model combining expert networks with the Adaptive Salient Region Attention Module (ASRAM) to specifically tackle these challenges. Tailored for varying lesion types, MEDiXNet leverages ASRAM to enhance focus on critical regions, substantially improving segmentation accuracy. Tested on the ISIC datasets, it achieved a 94% Dice coefficient, surpassing state-of-the-art methods. MEDiXNet's innovative approach represents a significant advancement in dermatological imaging, promising to elevate the precision of skin cancer diagnostics. © 2024 IEEE.},
note = {Journal Abbreviation: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.},
keywords = {Attention mechanism, Attention mechanisms, Blurred boundaries, Cancer detection, Deep learning, Dermatology, Expert systems, Image segmentation, Lesion segmentations, Mixture of experts, Mixture of experts model, Mixture-of-experts model, Salient regions, Skin cancers, Skin lesion, Skin lesion segmentation},
pubstate = {published},
tppubtype = {inproceedings}
}
Skin lesion segmentation in dermatological imaging is crucial for early skin cancer detection. However, it is challenging due to variation in lesion appearance, blurred boundaries, and the presence of artifacts. Existing segmentation methods often fall short in accurately addressing these issues. We present MEDiXNet, a novel deep learning model combining expert networks with the Adaptive Salient Region Attention Module (ASRAM) to specifically tackle these challenges. Tailored for varying lesion types, MEDiXNet leverages ASRAM to enhance focus on critical regions, substantially improving segmentation accuracy. Tested on the ISIC datasets, it achieved a 94% Dice coefficient, surpassing state-of-the-art methods. MEDiXNet's innovative approach represents a significant advancement in dermatological imaging, promising to elevate the precision of skin cancer diagnostics. © 2024 IEEE.