Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Afficher tous

1.

Hebbache, L.; Amirkhani, D.; Allili, M. S.; Hammouche, N.; Lapointe, J. -F.

Leveraging Saliency in Single-Stage Multi-Label Concrete Defect Detection Using Unmanned Aerial Vehicle Imagery Article de journal

Dans: Remote Sensing, vol. 15, no 5, 2023, ISSN: 20724292, (Publisher: MDPI).

Résumé | Liens | BibTeX | Étiquettes: Aerial vehicle, Aircraft detection, Antennas, Computational efficiency, Concrete defects, Deep learning, Defect detection, extraction, Feature extraction, Features extraction, Image acquisition, Image Enhancement, Multi-labels, One-stage concrete defect detection, Saliency, Single stage, Unmanned aerial vehicles (UAV), Unmanned areal vehicle imagery

2.

Yapi, D.; Mejri, M.; Allili, M. S.; Baaziz, N.

A learning-based approach for automatic defect detection in textile images Article d'actes

Dans: A., Zaremba M. Sasiadek J. Dolgui (Ed.): IFAC-PapersOnLine, p. 2423–2428, 2015, ISBN: 24058963 (ISSN), (Issue: 3 Journal Abbreviation: IFAC-PapersOnLine).

Résumé | Liens | BibTeX | Étiquettes: Algorithms, Artificial intelligence, Automatic defect detections, Barium compounds, Bayes Classifier, Computational efficiency, Contourlets, Defect detection, Defect detection algorithm, Defects, Detection problems, Feature extraction, Feature extraction and classification, Gaussians, Image classification, Learning algorithms, Learning systems, Learning-based approach, Machine learning approaches, Mixture of generalized gaussians, Mixtures of generalized Gaussians (MoGG), Textile defect detection, Textile images, Textiles, Textures

Partager cette page