

de Recherche et d’Innovation
en Cybersécurité et Société
Ouyed, O.; Allili, M. S.
Feature weighting for multinomial kernel logistic regression and application to action recognition Journal Article
In: Neurocomputing, vol. 275, pp. 1752–1768, 2018, ISSN: 09252312, (Publisher: Elsevier B.V.).
Abstract | Links | BibTeX | Tags: Action recognition, article, Classification, classification algorithm, Classification performance, Computer applications, controlled study, embedding, Feature relevance, feature relevance for multinomial kernel logistic regression, Feature weighting, Kernel logistic regression, kernel method, Learning, mathematical computing, Multinomial kernels, multinominal kernel logistic regression, Neural networks, priority journal, recognition, regression analysis, simulation, sparse modeling, Sparse models, sparse multinomial logistic regression, sparsity promoting regularization, standard, Supervised classification
@article{ouyed_feature_2018,
title = {Feature weighting for multinomial kernel logistic regression and application to action recognition},
author = {O. Ouyed and M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035104467&doi=10.1016%2fj.neucom.2017.10.024&partnerID=40&md5=09687b392a405be4338799a750932cf3},
doi = {10.1016/j.neucom.2017.10.024},
issn = {09252312},
year = {2018},
date = {2018-01-01},
journal = {Neurocomputing},
volume = {275},
pages = {1752–1768},
abstract = {Multinominal kernel logistic regression (MKLR) is a supervised classification method designed for separating classes with non-linear boundaries. However, it relies on the assumption that all features are equally important, which may decrease classification performance when dealing with high-dimensional and noisy data. We propose an approach for embedding feature relevance in multinomial kernel logistic regression. Our approach, coined fr-MKLR, generalizes MKLR by introducing a feature weighting scheme in the Gaussian kernel and using the so-called ℓ0-“norm” as sparsity-promoting regularization. Therefore, the contribution of each feature is tuned according to its relevance for classification which leads to more generalizable and interpretable sparse models for classification. Application of our approach to several standard datasets and video action recognition has provided very promising results compared to other methods. © 2017 Elsevier B.V.},
note = {Publisher: Elsevier B.V.},
keywords = {Action recognition, article, Classification, classification algorithm, Classification performance, Computer applications, controlled study, embedding, Feature relevance, feature relevance for multinomial kernel logistic regression, Feature weighting, Kernel logistic regression, kernel method, Learning, mathematical computing, Multinomial kernels, multinominal kernel logistic regression, Neural networks, priority journal, recognition, regression analysis, simulation, sparse modeling, Sparse models, sparse multinomial logistic regression, sparsity promoting regularization, standard, Supervised classification},
pubstate = {published},
tppubtype = {article}
}
Ouyed, O.; Allili, M. S.
Feature relevance for kernel logistic regression and application to action classification Proceedings Article
In: Proceedings - International Conference on Pattern Recognition, pp. 1325–1329, Institute of Electrical and Electronics Engineers Inc., 2014, ISBN: 978-1-4799-5208-3, (ISSN: 10514651).
Abstract | Links | BibTeX | Tags: Action classifications, Action recognition, Classification (of information), Classification methods, Classification performance, Feature relevance, Kernel logistic regression, Logistic regression, Multinomial kernels, Pattern Recognition, Supervised classification, Support vector machines
@inproceedings{ouyed_feature_2014,
title = {Feature relevance for kernel logistic regression and application to action classification},
author = {O. Ouyed and M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919884283&doi=10.1109%2fICPR.2014.237&partnerID=40&md5=616038cd7924614fd633061dfed32903},
doi = {10.1109/ICPR.2014.237},
isbn = {978-1-4799-5208-3},
year = {2014},
date = {2014-01-01},
booktitle = {Proceedings - International Conference on Pattern Recognition},
pages = {1325–1329},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {An approach is proposed for incorporating feature relevance in mutinomial kernel logistic regression (MKLR) for classification. MKLR is a supervised classification method designed for separating classes with non-linear boundaries. However, it assumes all features are equally important, which may decrease classification performance when dealing with high-dimensional or noisy data. We propose a feature weighting algorithm for MKLR which automatically tunes features contribution according to their relevance for classification and reduces data over-fitting. The proposed algorithm produces more interpretable models and is more generalizable than MKLR, Kernel-SVM and LASSO methods. Application to simulated data and video action classification has provided very promising results compared to the aforementioned classification methods. © 2014 IEEE.},
note = {ISSN: 10514651},
keywords = {Action classifications, Action recognition, Classification (of information), Classification methods, Classification performance, Feature relevance, Kernel logistic regression, Logistic regression, Multinomial kernels, Pattern Recognition, Supervised classification, Support vector machines},
pubstate = {published},
tppubtype = {inproceedings}
}