

de Recherche et d’Innovation
en Cybersécurité et Société
Ouyed, O.; Allili, M. S.
Recognizing human interactions using group feature relevance in multinomial kernel logistic regression Proceedings Article
In: K., Rus V. Brawner (Ed.): Proceedings of the 31st International Florida Artificial Intelligence Research Society Conference, FLAIRS 2018, pp. 541–545, AAAI press, 2018, ISBN: 978-1-57735-796-4.
Abstract | Links | BibTeX | Tags: Art methods, Artificial intelligence, Feature relevance, Group sparsities, Human interactions, Image features, Kernel logistic regression, Multinomial kernels, regression analysis, Sparse models
@inproceedings{ouyed_recognizing_2018,
title = {Recognizing human interactions using group feature relevance in multinomial kernel logistic regression},
author = {O. Ouyed and M. S. Allili},
editor = {Rus V. Brawner K.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067977954&partnerID=40&md5=1c8d720de570fc565bca3741c107bc9a},
isbn = {978-1-57735-796-4},
year = {2018},
date = {2018-01-01},
booktitle = {Proceedings of the 31st International Florida Artificial Intelligence Research Society Conference, FLAIRS 2018},
pages = {541–545},
publisher = {AAAI press},
abstract = {We propose a supervised approach incorporating group feature sparsity in multi-class kernel logistic regression (GFR-MKLR). The need for group sparsity arises in several practical situations where a subset of a set of factors can explain a predicted variable and each factor consists of a group of variables. We apply our approach for predicting human interactions based on body parts motion (e.g., hands, legs, head, etc.) where image features are organised in groups corresponding to body parts. Our approach, leads to sparse models by assigning weights to groups of features having the highest discrimination between different types of interactions. Experiments conducted on the UT-Interaction dataset have demonstrated the performance of our method with regard to stat-of-art methods. Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.},
keywords = {Art methods, Artificial intelligence, Feature relevance, Group sparsities, Human interactions, Image features, Kernel logistic regression, Multinomial kernels, regression analysis, Sparse models},
pubstate = {published},
tppubtype = {inproceedings}
}
Ouyed, O.; Allili, M. S.
Feature weighting for multinomial kernel logistic regression and application to action recognition Journal Article
In: Neurocomputing, vol. 275, pp. 1752–1768, 2018, ISSN: 09252312, (Publisher: Elsevier B.V.).
Abstract | Links | BibTeX | Tags: Action recognition, article, Classification, classification algorithm, Classification performance, Computer applications, controlled study, embedding, Feature relevance, feature relevance for multinomial kernel logistic regression, Feature weighting, Kernel logistic regression, kernel method, Learning, mathematical computing, Multinomial kernels, multinominal kernel logistic regression, Neural networks, priority journal, recognition, regression analysis, simulation, sparse modeling, Sparse models, sparse multinomial logistic regression, sparsity promoting regularization, standard, Supervised classification
@article{ouyed_feature_2018,
title = {Feature weighting for multinomial kernel logistic regression and application to action recognition},
author = {O. Ouyed and M. S. Allili},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035104467&doi=10.1016%2fj.neucom.2017.10.024&partnerID=40&md5=09687b392a405be4338799a750932cf3},
doi = {10.1016/j.neucom.2017.10.024},
issn = {09252312},
year = {2018},
date = {2018-01-01},
journal = {Neurocomputing},
volume = {275},
pages = {1752–1768},
abstract = {Multinominal kernel logistic regression (MKLR) is a supervised classification method designed for separating classes with non-linear boundaries. However, it relies on the assumption that all features are equally important, which may decrease classification performance when dealing with high-dimensional and noisy data. We propose an approach for embedding feature relevance in multinomial kernel logistic regression. Our approach, coined fr-MKLR, generalizes MKLR by introducing a feature weighting scheme in the Gaussian kernel and using the so-called ℓ0-“norm” as sparsity-promoting regularization. Therefore, the contribution of each feature is tuned according to its relevance for classification which leads to more generalizable and interpretable sparse models for classification. Application of our approach to several standard datasets and video action recognition has provided very promising results compared to other methods. © 2017 Elsevier B.V.},
note = {Publisher: Elsevier B.V.},
keywords = {Action recognition, article, Classification, classification algorithm, Classification performance, Computer applications, controlled study, embedding, Feature relevance, feature relevance for multinomial kernel logistic regression, Feature weighting, Kernel logistic regression, kernel method, Learning, mathematical computing, Multinomial kernels, multinominal kernel logistic regression, Neural networks, priority journal, recognition, regression analysis, simulation, sparse modeling, Sparse models, sparse multinomial logistic regression, sparsity promoting regularization, standard, Supervised classification},
pubstate = {published},
tppubtype = {article}
}