Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Show all

1.

Joudeh, I. O.; Cretu, A. -M.; Bouchard, S.

Predicting the Arousal and Valence Values of Emotional States Using Learned, Predesigned, and Deep Visual Features † Journal Article

In: Sensors, vol. 24, no. 13, 2024, ISSN: 14248220 (ISSN), (Publisher: Multidisciplinary Digital Publishing Institute (MDPI)).

Abstract | Links | BibTeX | Tags: adult, Affective interaction, Arousal, artificial neural network, Cognitive state, Cognitive/emotional state, Collaborative interaction, computer, Convolutional neural networks, correlation coefficient, Deep learning, emotion, Emotional state, Emotions, female, Forecasting, Helmet mounted displays, human, Humans, Learning algorithms, Learning systems, Long short-term memory, Machine learning, Machine-learning, male, Mean square error, Neural networks, physiology, Regression, Root mean squared errors, Video recording, virtual reality, Visual feature, visual features

2.

Laib, L.; Allili, M. S.; Ait-Aoudia, S.

A probabilistic topic model for event-based image classification and multi-label annotation Journal Article

In: Signal Processing: Image Communication, vol. 76, pp. 283–294, 2019, ISSN: 09235965 (ISSN), (Publisher: Elsevier B.V.).

Abstract | Links | BibTeX | Tags: Annotation performance, Classification (of information), Convolution, Convolution neural network, Convolutional neural nets, Event classification, Event recognition, Image annotation, Image Enhancement, Latent Dirichlet allocation, Multi-label annotation, Neural networks, Probabilistic topic models, Semantics, Statistics, Topic Modeling

3.

Ouyed, O.; Allili, M. S.

Feature weighting for multinomial kernel logistic regression and application to action recognition Journal Article

In: Neurocomputing, vol. 275, pp. 1752–1768, 2018, ISSN: 09252312, (Publisher: Elsevier B.V.).

Abstract | Links | BibTeX | Tags: Action recognition, article, Classification, classification algorithm, Classification performance, Computer applications, controlled study, embedding, Feature relevance, feature relevance for multinomial kernel logistic regression, Feature weighting, Kernel logistic regression, kernel method, Learning, mathematical computing, Multinomial kernels, multinominal kernel logistic regression, Neural networks, priority journal, recognition, regression analysis, simulation, sparse modeling, Sparse models, sparse multinomial logistic regression, sparsity promoting regularization, standard, Supervised classification

4.

Lahmiri, S.; Gagnon, S.

A sequential probabilistic system for bankruptcy data classification Book

IGI Global, 2018, ISBN: 978-1-5225-5644-2 1-5225-5643-5 978-1-5225-5643-5, (Publication Title: Intelligent Systems: Concepts, Methodologies, Tools, and Applications).

Abstract | Links | BibTeX | Tags: Bankruptcy prediction, Corporate finance, Data classification, Discriminant analysis, Forecasting, Human resource management, Independent variables, Neural networks, Nonlinear problems, Probabilistic systems, Real-world problem, Soft computing, Softcomputing techniques, Support vector machines

5.

Chartier, S.; Renaud, P.; Boukadoum, M.

A nonlinear dynamic artificial neural network model of memory Journal Article

In: New Ideas in Psychology, vol. 26, no. 2, pp. 252–277, 2008, ISSN: 0732118X (ISSN).

Abstract | Links | BibTeX | Tags: Chaos theory, Cognitive science, Connectionism, Mathematical modeling, Neural networks

6.

Chartier, S.; Giguère, G.; Renaud, P.; Lina, J. -M.; Proulx, R.

FEBAM: A feature-extracting bidirectional associative memory Proceedings Article

In: IEEE International Conference on Neural Networks - Conference Proceedings, pp. 1679–1684, Orlando, FL, 2007, ISBN: 1-4244-1380-X 978-1-4244-1380-5, (ISSN: 10987576).

Abstract | Links | BibTeX | Tags: Artificial intelligence, Associative processing, Bi-directional associative memory, Blind source separation, Computer networks, Data storage equipment, Feature extraction, Financial data processing, Hemodynamics, Image processing, Image reconstruction, Independent component analysis, Joint conference, Neural networks, Separation

7.

Chartier, S.; Renaud, P.

Eye-tracker data filtering using pulse coupled neural network Proceedings Article

In: Proceedings of the IASTED International Conference on Modelling and Simulation, pp. 91–96, Montreal, QC, 2006, ISBN: 0-88986-594-9 978-0-88986-594-5, (ISSN: 10218181).

Abstract | Links | BibTeX | Tags: Data reduction, Eye trackers, Eye-tracker, Filter, Median, Neural networks, Noise, Nonlinear filtering, Pulse couple neural network, Pulse coupled neural network (PCNN), Signal to noise ratio, Spurious signal noise, Wave filters

Share this page