Slide
Centre Interdisciplinaire
de Recherche et d’Innovation
en Cybersécurité et Société

Show all

1.

Ouyed, O.; Allili, M. S.

Recognizing human interactions using group feature relevance in multinomial kernel logistic regression Proceedings Article

In: K., Rus V. Brawner (Ed.): Proceedings of the 31st International Florida Artificial Intelligence Research Society Conference, FLAIRS 2018, pp. 541–545, AAAI press, 2018, ISBN: 978-1-57735-796-4.

Abstract | Links | BibTeX | Tags: Art methods, Artificial intelligence, Feature relevance, Group sparsities, Human interactions, Image features, Kernel logistic regression, Multinomial kernels, regression analysis, Sparse models

2.

Ouyed, O.; Allili, M. S.

Feature weighting for multinomial kernel logistic regression and application to action recognition Journal Article

In: Neurocomputing, vol. 275, pp. 1752–1768, 2018, ISSN: 09252312, (Publisher: Elsevier B.V.).

Abstract | Links | BibTeX | Tags: Action recognition, article, Classification, classification algorithm, Classification performance, Computer applications, controlled study, embedding, Feature relevance, feature relevance for multinomial kernel logistic regression, Feature weighting, Kernel logistic regression, kernel method, Learning, mathematical computing, Multinomial kernels, multinominal kernel logistic regression, Neural networks, priority journal, recognition, regression analysis, simulation, sparse modeling, Sparse models, sparse multinomial logistic regression, sparsity promoting regularization, standard, Supervised classification

3.

Ouyed, O.; Allili, M. S.

Feature relevance for kernel logistic regression and application to action classification Proceedings Article

In: Proceedings - International Conference on Pattern Recognition, pp. 1325–1329, Institute of Electrical and Electronics Engineers Inc., 2014, ISBN: 978-1-4799-5208-3, (ISSN: 10514651).

Abstract | Links | BibTeX | Tags: Action classifications, Action recognition, Classification (of information), Classification methods, Classification performance, Feature relevance, Kernel logistic regression, Logistic regression, Multinomial kernels, Pattern Recognition, Supervised classification, Support vector machines

Share this page