

de Recherche et d’Innovation
en Cybersécurité et Société
Audet, F.; Allili, M. S.; Cretu, A. -M.
Salient object detection in images by combining objectness clues in the RGBD space Article de journal
Dans: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10317 LNCS, p. 247–255, 2017, ISSN: 03029743, (ISBN: 9783319598758 Publisher: Springer Verlag).
Résumé | Liens | BibTeX | Étiquettes: Color, Color information, Depth information, Image analysis, Multistage approach, Object detection, Object recognition, Potential region, Real-world image, Salient object detection, Salient objects, Statistical distribution, Voting machines
@article{audet_salient_2017,
title = {Salient object detection in images by combining objectness clues in the RGBD space},
author = {F. Audet and M. S. Allili and A. -M. Cretu},
editor = {Campilho A. Karray F. Cheriet F.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85022229105&doi=10.1007%2f978-3-319-59876-5_28&partnerID=40&md5=d78eb69cecd0a34ca2d517cfee44ef54},
doi = {10.1007/978-3-319-59876-5_28},
issn = {03029743},
year = {2017},
date = {2017-01-01},
journal = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
volume = {10317 LNCS},
pages = {247–255},
abstract = {We propose a multi-stage approach for salient object detection in natural images which incorporates color and depth information. In the first stage, color and depth channels are explored separately through objectness-based measures to detect potential regions containing salient objects. This procedure produces a list of bounding boxes which are further filtered and refined using statistical distributions. The retained candidates from both color and depth channels are then combined using a voting system. The final stage consists of combining the extracted candidates from color and depth channels using a voting system that produces a final map narrowing the location of the salient object. Experimental results on real-world images have proved the performance of the proposed method in comparison with the case where only color information is used. © Springer International Publishing AG 2017.},
note = {ISBN: 9783319598758
Publisher: Springer Verlag},
keywords = {Color, Color information, Depth information, Image analysis, Multistage approach, Object detection, Object recognition, Potential region, Real-world image, Salient object detection, Salient objects, Statistical distribution, Voting machines},
pubstate = {published},
tppubtype = {article}
}
Allili, M. S.; Ziou, D.; Bouguila, N.; Boutemedjet, S.
Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection Article de journal
Dans: IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no 10, p. 1373–1377, 2010, ISSN: 10518215.
Résumé | Liens | BibTeX | Étiquettes: Clustering model, Feature extraction, Feature selection, Gaussian distribution, Generalized Gaussian, Heavy-tailed, High dimensional spaces, Image and video segmentation, Image segmentation, image/video segmentation, Minimum message lengths, Real-world image, Video cameras
@article{allili_image_2010,
title = {Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection},
author = {M. S. Allili and D. Ziou and N. Bouguila and S. Boutemedjet},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957964550&doi=10.1109%2fTCSVT.2010.2077483&partnerID=40&md5=d888c7fe52eff37a5744bccd6a4d3d9e},
doi = {10.1109/TCSVT.2010.2077483},
issn = {10518215},
year = {2010},
date = {2010-01-01},
journal = {IEEE Transactions on Circuits and Systems for Video Technology},
volume = {20},
number = {10},
pages = {1373–1377},
abstract = {In this letter, we propose a clustering model that efficiently mitigates image and video under/over-segmentation by combining generalized Gaussian mixture modeling and feature selection. The model has flexibility to accurately represent heavy-tailed image/video histograms, while automatically discarding uninformative features, leading to better discrimination and localization of regions in high-dimensional spaces. Experimental results on a database of real-world images and videos showed us the effectiveness of the proposed approach. © 2010 IEEE.},
keywords = {Clustering model, Feature extraction, Feature selection, Gaussian distribution, Generalized Gaussian, Heavy-tailed, High dimensional spaces, Image and video segmentation, Image segmentation, image/video segmentation, Minimum message lengths, Real-world image, Video cameras},
pubstate = {published},
tppubtype = {article}
}
Allili, M. S.; Ziou, D.; Bouguila, N.; Boutemedjet, S.
Unsupervised feature selection and learning for image segmentation Article d'actes
Dans: CRV 2010 - 7th Canadian Conference on Computer and Robot Vision, p. 285–292, Ottawa, ON, 2010, ISBN: 978-0-7695-4040-5.
Résumé | Liens | BibTeX | Étiquettes: Clustering algorithms, Computer vision, Evolutionary algorithms, Feature extraction, Feature selection, Gaussian distribution, Generalized Gaussian, Generalized Gaussian Distributions, Heavy-tailed, High dimensional spaces, Image distributions, Image segmentation, Large database, Over-estimation, Real-world image, Unsupervised feature selection
@inproceedings{allili_unsupervised_2010,
title = {Unsupervised feature selection and learning for image segmentation},
author = {M. S. Allili and D. Ziou and N. Bouguila and S. Boutemedjet},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954407977&doi=10.1109%2fCRV.2010.44&partnerID=40&md5=a7d8e3147216429f18ef7af3167acb42},
doi = {10.1109/CRV.2010.44},
isbn = {978-0-7695-4040-5},
year = {2010},
date = {2010-01-01},
booktitle = {CRV 2010 - 7th Canadian Conference on Computer and Robot Vision},
pages = {285–292},
address = {Ottawa, ON},
abstract = {In this paper we investigate the integration of feature selection in segmentation through an unsupervised learning approach. We propose a clustering algorithm that efficiently mitigates image under/over-segmentation, by combining generalized Gaussian mixture modeling and feature selection. The algorithm is based on generalized Gaussian mixture modeling which is less prone to region number over-estimation in case of noisy and heavy-tailed image distributions. On the other hand, our feature selection mechanism allows to automatically discard uninformative features, which leads to better discrimination and localization of regions in high-dimensional spaces. Experimental results on a large database of real-world images showed us the effectiveness of the proposed approach. © 2010 IEEE.},
keywords = {Clustering algorithms, Computer vision, Evolutionary algorithms, Feature extraction, Feature selection, Gaussian distribution, Generalized Gaussian, Generalized Gaussian Distributions, Heavy-tailed, High dimensional spaces, Image distributions, Image segmentation, Large database, Over-estimation, Real-world image, Unsupervised feature selection},
pubstate = {published},
tppubtype = {inproceedings}
}